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ABSTRACT

The oprmized shape of trusses are found by presenring a new selection and reproduction
operaior. The stress, buckling an displacement constraints, consistent with design code, are used,
Dasign variables are discrete size varlables (member areas) and continwous shape variables
inodal coardinates). The proposed methods, is fast and has a stable convergence. In addition, it
results inan oplimized structure with low weight,

Kevwords: gencuc aleorithms,  reproduction operator, optimal russ, size variahles, shape
aptimization, continuous and discrete variables, buckling constraints,

1. INTRODUCTION

[n all of genetic algorithms three basic operators: reproduction, crossover and mutation are
presented |1 By reproduction operators, it is decided that a string should survive or not In
addition, how many of that string, should be placed in the mating pool, ta produce the next
generation of the sirings. Decision is done based on the fitness of any string by different
methods, In Tact, Nitness shows the abality to survive and reproduction in the next generations, In
the structural optimization problems, the fitness function is a cambination of obyjective function
and constraines | 2-4].

selection and  reproduction operator, in addition to final influences the fluctuation of
optimized soulutions in successive generalions, and effects the optimized result. Because of the
importance of this operator in genctic scarch strategics, rescarchers have looked Tor new operator
ol this tvpe, so that by using it, optimization process has little Muetuation and high conversence,
On the other hand, a spucture with less weight will be gained. Thus, it is inlended to use the
methad of the ranking selection and & mathematical relationship for computing the number of
any string reproduction. The important point s that the number of reproductions should be in
such way, so that, unordinary strings will not dominate the population.

In this paper, at first, the mathematicel model of truss  shape optimization and the AISC
constramnts are discussed [3-7] Then, the basis and specizlities of genctic computational steps
are presented. After that, some examples of truss structures are solved and their convergence
history is compared o other methods, Here, the optimization problem has both continuons
ishape) and discrete (size} variables. In addition, based on the design code rules, the optimized
solutton s found inder the stress, buckling and displacement constraints.
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2. MATHEMATICAL MODEL FOR TRUSS SHAPE OPTIMIZATION

The optimization problem ol truss shape that its design variables are a combination of discrete
varables ol member cross section areas (A} and continuous nodal coordinates variables {30, is
formulized as:
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In these relationships, {Al= {A; . As ..., Au}| is the size variable vector that is selected
from the discrete variables list. [n addition {X]= {3, X, ..., }{H}T is the shape variable vector
that can have any continuous quantity. [n these relationships, objective function, WA, X) is the
total truss weight and g , Ai, Li are i the member specific weight, cross section arca and member

length, respectively, Also, X is the jth coordinate of the node of member i. m and rare the
number of members and joint coordinates, respectively, Alsa, ™), g, (D1, 4[}::}, i1x! }and
{ }("’} are the lower and upper bounds of the member stress vector {o}, displacement veclor 13}
and nodal coordinates vector (X}, On the other hand, nodal displacements and member stresses
are Tound by structural analysis rom the following equations:

(K] {D} = {2} (5)
fat =[T] {1} (6]

In the presented equations, |K| is the sttiffhess matrix of the structure, {P} is the nodal forces
and [T] 15 a trunsformation matrix that relates the nodal displacements fo the member siresses,
For the member  under axial compression, the allowable stress depends on the slenderness ratia
#i The slenderness ratio 15 & function of the member length T, radius of gyration rand effective
length factor K. This dependence 15 written as;

A= (7

Tensile, fer, b, and compressive, {or }, allowable stresses based on AISC code arc found

by

o, o, <

ot =06F, o 20 (8)
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In these relationships, E is the modulusof elasticity, F. is the yield stress of steel and C, is the
slenderness ratio dividing clastic and inelastic buckling wones, C. s caleulated as follows;

¢, = 22°E/F, ‘
- (10

The genetic methods can not solve constrained optimization problems directlv, so that the
probiem should be tansformed to a unconstrained one. To do this, methods such as penaly
function or Lagrangian multipliers should be used. If penalty function technique is used, enough
precision should be emploved for the panalty quantity for the constraints viloation. [t ¢an be
sumply found that  how penalty s acceptable, A large penalty can break many designs and slow

_ W, B e

b =2 -I-RPZT (1)

I" = max -::-g+-,ﬂ:a {12}
g

In eq (L1)., Wiisthe its design woeight, Wi, 15 the maximum weight among o seneration of
designs and By is the penaly function coefficient. In eq (12}, g is the stress and displacement
constraints and g is the bounds of the constraints,

3. GENETIC ALGORITHM FOR OPTIMIZATION

o Coding and decoding of design variables

[0 genctic methods, representing a design {design variable sct) has a specific impoertance. These
represenlations relate the real problem o the genetic algorithm. It should be added that this
process works on o coded varishles, There are many types of representation, for example,
representing the steing with binary numbers, Noating point and ete, Each design variable is made
of a substring of 0 and 1. Then, by adding of top and bollom of these substrings, a design is
buill, The used variables in the genetic wechniques are in fel discrele ones, but, with a specific
precision continuous variables can be entered in the problem. Now, coding and decoding of any
type of variables, diserete and continuous, are discussed.
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311 Continvous design variable
1- Coding: 1f the desired precision in continucns design variables is g the mintmum length (1) of
substring should be:

. PUS
1= log?[— (13)
. F

In this equation, x" and x" are upper and lower bounds of the continuous variable x.
2- Decoding: First, binary substring is transformed to a decimal I with no sign. Then, the
physical quantity X is caleulated as :

x=x"+[— (14

302 Discrete desion variables
. Coding: the length of substring is dependent on the number of discrete design vanables. The
following relationship is valid:

5 = Number of discrete variables (133

2. Decoding: to decode the strings, the unsigned decimal equivalent of binary string is
calculated, and then it will be mapped to the physical value of x.

3.2 Fimness Function

Based on the Darwinian survival of the fittest theory, fitness is a qualitative value that measures
the ability of reproduction of living creatures. In the genetic algorithms, fitness s used o
allocate the reproduction  ability of tested designs. Thos, a type of measurement, “goodness”™ ot
“guality”™ s what should be maximized. [no other words, strings with higher fitness, have more
chance to be selected as father and mother to produce the next generation. On this basis, fitness
function is found as :

F_0:|:3'¢' I:]I.‘;‘I

In this equation, . is modified objective function, that avoids F from becoming negative.

[n genetic schemes, search progresses to find strings with high fitness. Therefore, the
maximization problem of the fitness function s considered. On the other hand, in nature, any
chromosome has a fitness that is qualitative and non-negative. On this basis, to transform the
minimization problem of the weight of structure to a maximization problem of fitness, the
tollowing equation is usually used [9]:

Fi = Coue - Wi (17
Here, F; is the fitness function and W; iz the weight of structure o the 1th design, and Crop is 2

sufficiently large number to prevent fitness become negative. [n the investigation by Wu and
Chou, fitness function was presented as ¢ '
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Here, ¢ 15 the modified objective function ol the ith design, and gees 15 the maximuem
maodilied objective function of the generation,

3.3 Popudation size

Ome ol the important factors influsncing suitable execution of the genetic method is “population
siee”. The number of strings in a generation (iteration) s called population size. The greater this
factor, the more will he the number of design points na cyele of search and less will be the
probablity of falling in the Tocal optimal points. In other words, popalation size will prevent the
search to be enclosed in @ subspace. Thus, it gives the geoctic technigques the ability of
mltimodal optimization functions. Population siee should be an even number and be constant in
the opumization process. O course, f population size gers big, fitness function evaluation will
merease  that will increase the number of analysis in any cyele of search process, Therefore, cost
and time of caleulations will increase. It is not usual w take population size more than 100 in the
genctic methaod (2],

34 Seleciion and reproduction operator
Reproduction process is based on search of production of “hetter™ (with higher fitness) members
(dlesians) and deletion of “worse™ (with low (tness) members [10]. Siings are selected as
parcnts [or proliferation and production of new gencration, based on their fitness. The law of
selection is: the best member of a generation produces more, average membel remains pair and
the worst member disappears. There are two types of selection: the roulette wheel and the
ranking sclection.

[n the roulette wheel method, a selection probability is allocated to any member of
population, based on it's fitness. [UFiis the fitness value of this member, 1ts selection probability

i

S F

o=

A

(L5

lo this equation. np s the population size. The number of reproductions of the ith string can
be found as |

JE
o= (aplf, = F-'- (20

Here, Fuip is the average fitness of the population.

[n the ranking selsction. the fitness of strings are vsed indirectly for selection and
reproduction. The selection process is o sueh that, first all of the population strings are sorted in
ascending  or descending order, based on their Nmess, then, their selection probability s
calculated based on their rank i this group. e group of sitings with population size np arc
soried in ascending fiwess of Iy ., Fup » then, selection probahility is found by:
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i i 2i
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2

To distinguish number of reproductions of this siring, p si probability is multiplied by
population size, so the number of reproductions of i th string equals to -

2i
ap+1

wr, =(np)lP,. = (22)

The advantages of ranking selection are :
I. The ability tw prevent the predominance of unordinary members, so that early
convergence 5 avoided,
2. Wandering among approximately equal values and even standstill in population is
avolded,
These zre aspects  of the genctic methods called survival of the fittest, In other words, better
members produce more so that their desirable specialties can be wansferred to their children.
The algorithm of selection and reproduction used in this paper is as follows:
First step -strings are descendingly sorted based on their fitness,
Second step -the rank (R) of any siring in population is calculated,
Third step -the generation index (N) of ith string is found as :

N, =(np-R +1)° (23)

Fourth step -the sum of generation indices of the last step is calculated as ;

5 2 2
ZP N = (np) (np +1)° (24)

4

Fifth step. the number of reproduction of the ith string is found as :

.'l'i'r 4_'?"!.
fy slpl st (23)

ZN: np(np +1)°

selection of suitable crossover operator is dependent on the problem domain and string
representation of the variables. Usually, in traditional genetic algorithms, unipoint or two points
operators have been used. However, some recent researches have shown that operators with
more crossover points, like three or four points, are much more powerful,

3.5 Mutation operalor
This operator has an important role in genetic methods as a guard. In these techniques, mutation
seldom happens, and that is a reflection of mutation in real world, Some of numbers (0, 1) in a
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particular  situation in all strings of a population may be deleted in the reproduction and
crossover process. Recovering of these siluations, s not possible only by uze of reproduction
and crossover operators. To §ix this by the muration process, some of binary numbers in strings
change with mutation propabilicy of P, The mutation probabilicy s hould be caleulated precizely,
If it has a low walue, reproduction of good schemas will be prevented, und caleulation will be
lowered e a random  scarch method. Jenking proposes a mutation  propability of
P, = (.05 [§]. .

30 Schewia theory

First, some terms used in the schema theory are descirbed, Then, theinfluence of the three
operators, reproduction, crossover and mutation, on spreading a special type of schema in
squentizl generations 15 considered, Here, strings are shown as binary numbers. This assumplion
does nol damage the generality of the problem. Any of the 0 or | owmbers i a string 15 called a
gene: A schema H 1s compaosed of three symbols 0, 1 and *. ¥ shows a number 0 or 1 in a specific
simation. For example, H="* 11 * 0 ** 15 a schema of length 7. The siring A = 0111000 iz one
example  of schema 1, because genes of siring A is cu:np1tiblc with constant sinations 2,3 and 5
of schema. In a binary string of length |, there are 3' schemas. Generally, for k symbals, there
arc I;k—IJI schemmas, Inoa population with np strings, there exsits maximum number of np = 2/
schemas, beeause any string shows 20 schemas | 1.

It 15 assumed that in oa given tme nterval G othe number of special schemas Hoexisted in
population A, are written as m = (il | £). The number of expected reproductions of a special
schema H o in the next generation, under simultanecus action of reproduction, crossover and
mutalion operators, 15 given by the next equation, 1t is reminded that the multiplication of very
small numbers are neglecied.

.:fs(H}

m{H 1~ 1= m(H, er ~(P) —OUH (P, (26)

FI) |

F
In this cquation, F{H}Y is the average fitness of strings that schema H presents in time t. Also,

F=EF np is the average fitness of the todal population, Peoand Py, are the crossover and

mutation probability on strings, respectively, Generally, the smaller the defining length of
schema, the lower ils order, and higher its average fitness, it will increase in the next
generations. This zrowth s done exponentially. For the importance of this conclusion, it is called
“the schema thearem™ or “the fundamental theorem of genetic algorithms™, This theorem tells
what happens in genetic search process and proves that search process 15 not random at all [9],

3.7 Conversence critervia

A cnitical and very important part of optimization process is ascertaining when  scarch for
optimized solution should be stopped. The convergence criteria can have great influence on
workahility and dependability  of oplimizalion process, One of stopping criterion is the number
ol iterations, In genetic search, the new strings of a gencration are better than the last genaration,
and after some gencrations, depending on the reproduction, crossover and mutation operalors,
and alse, the number of problem variables and the number of integers that variables can allocate,
population gets full of strings with high tness that have only a hittle difference with the best
member of that generation’s fimess. It is evident that insuch a state, the average fitness gets
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close to the best member's fitness. Rajeev and Krishnamurthy have proposed that search should
be stopped when the fitmess of 85 percent of existant strings in the population becomes similar
[4]. Grierson and Pak use this convergence criteria: “search process in genetic methods goes as
far as in specific mumbers of simultaneous generations, there s no improvement in the most
feasible design or when a defined degree of homogenity is found in design groups™.

In addition to these convergence criterion, & criteria is defined as .

iF:IIH.‘. - II_:’J_,',"
IF.

T

< E (27

In this relationship, Fr.. and Favg are equal to maximum and average litness in the present
iteration, respectively, and ¢ is the desired precision.

1.8 The algorithm
Now, the steps of the discussed genetic method is presented:

First step -Data: The geometric and mechanical properties of the structure are entered. If the
size variables are discrete, they should be entered, too. For continuous variables, shape or size,
the upper and lower limits and desired precision are needed. Population size, crossover and
mutation probabilities, crossover ype, penalty function coefficient and maximum number of
interations are other data needed.

Second step - Initial population production: Binary string of necessary length, which is a
function of number of design variables and thelr precision, are produced randomly, The number
of these strings is equal to population size.

Third step — Decoding: In this step, the strings produced from the previous step are decoded
and the real values of design variables are calculated.

Fourth step — Fitness function evaluation: All designs (strings) in the population are analyzed
and stresses, displacements and their weights are calculated. Then, using external penalty
function, fitness function of any string is found.

Fifth step - Reproduction operator: In this step, using proposed selection and reproduction
aperator, number of reproductions of any string is determined and the same number of strings
are put in the marting poal.

Sixth step - Crossover operator: Depending on crossover probability, necessary number of
strings, two by two, are selected randomly and based on their type, crossover takes place on
them.

Seventh step - Mutation operator: In this step, the nature of a perecentage of total binary
numbers in population, which depends on mutation probability, is changed. In other words, a
number of 0 or Is are selected randomly and are changed from 0 to lor from 1 to 0.

Eighth step - Convergence criteria: Here, the criteria to stop the search is controlled. If this
criteria is reached, it goes to the next step, else, goes back to the third step,

Ninth step -Reporting the results and end of process: The results of genetic search that
contain design variables and the optimum weight of structure, and also, the time clapsed in
process, are printed in the output files.

4. NUMERICAL WORKS
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[n this sechon, some optimization problems, having size and shape vanables, are analyzed.
These examples have been selected such that they are being uselul and practical. To decrease
design wvariables and also make them applicable, approximate linking of vanables have been
used, Some of the shape vanables, nodal coordinates, are linking o cach other. In grouping these
vartables, o addition 1o keeping symmetry with respect to one or rwo axes, suitable operation of
structure, and beautiful architecmure are considersd too. The upper and lower limits have been
chosen 2o that the nodes can net move on each other. The cross section of the members are
selected as double angle thar are presented in table (8). In this table, the minimum radius of
avration of any section, that is used in calculation of allowable compressive stress, is given. The
cToss sections are grouped so that the diagonal, upper and lower members are placed in different
aroups, Such groups  are inserted in related ables, Inoall of examples, the modulus of elasticity,
L, density, p, and vield stress of steel, Fy | are as follows:

E =2.07 x 105 MPa, = 7860 kg/m’ , F, = 2.38 x 10° MPa

Because of applicablity aspect of structures, constraints of optimization are the design rules
ol AISC. The constraints are: Stress, buckling and nodal displacements, Stress and buckling
constraints arc used for all members. On this bhasis, their stress is checked so that it does not
cxceed the allowable value. IF siress  in one or some members 18 exceeded Itom the allowable
stress, this constraint 12 not valid and the design 1s not acceptable. To pull the desipn 1o the
feasible space, external penalty function has been used. In this method | designs are trensferred
to the acceptable zone of design space by allocating suitable penalties for the invalid constraints.
I a2 member is compressive, buckling phenomena is controlled based on design code. Also, key
nodal poants, Tor mstance, the nodes thatl loads act on them, or the free end nodes in cantilevers,
that have the largest and most criveal displacements are constramed to & maximum value in all
directions, In fact. with this constraing, the required stiffness of the structure is provided. 1o this
paper, the penalty function coefficient is increased 3 upits after 20 iterations. Selection of this
coclficient is simple by normalizing the abjective and constraints fonctions.

4.0 Twe dimensional trusy bridge with 26 members

I this example, the optimum shape of g two dimensional truss with 26 members, shown in Figure 1,
15 found. In this structure, the lower joints are loaded. These joints should have constant
situation.  The optimization problem includes stress, buckling and nodal displacement
constraints. The allowable stresses are found from the AISC code. Here, displacement of nodes
number 2050 7.8 11 and 13 are restrained to 0,05 meters, The members of the truss are located
in four groups as presented in lable | The cross sectional area of the members are selected from

double angles of table (&)
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Figure | Two dimensional truss bridgc with 26 members

Table | Member cross section groups

Group Member Mummber
1 2,6,10,15,19, 23, 26
2 1,4, 8,12,17,21,25
3 3,7, 11, 16, 20, 24
4 5,9,13, 14, 185, 22

The nodes 2.4, 6,8, 10 and 12 can move along v axis, Shape design variables, using the
structure symmetry, has upper and lower bounds in meters as:

4752 X, =Ve=y 55
42X, =y, =y,2475
2z X =y, =y,%4

The maximum difference of upper and lower shape variables equal 2 meters. If precision of
0.00 is needed for these variables, minimum length of shape and size variables are 8 and 6,
respectively. This optimization problem includes four independent wariables of size and 3 of
shape. So, the length of any string equals 48,

The final optimized solution for this structure, using all of four methods, are presented in
table 2. The best solution is found using proposed method, having weight of 2588 kilograms.
After that, the methods of 7, 2 and 5 are in orders. The difference between the proposed method
solution with the best one of other methods 7 with the minimum weight of 2671 kg 1s 3.1
percent. In this example, 5 gives the worst opltimized solution. One reason is the selection of a
nonsuitable  weight normalization factor that should be entered in that method, Numerical
experience is needed for any problem to find a suitable value for this factor. This, damages the
antomation of the method and is one of difficulties for this technigue.
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Table 2 Final solution for truss bridge with 26 members

Wanable Rel. [2] Ref. [7] Ref. [5] Proposed
Afem’) 15.06 15.06 16,26 15.06
A 6.0 B 00 .00k 35.00
My 23R 2Lan 22.00 22.00
Ay S0.20 30020 50,80 2080
X (m) 4.75 4.75 ¢.BO8 4,730
X 4,000 44000 4 006 4.00
X 2.25 2.503 2484 2.500
Weight (k) 2680.0 2670.5 2707.02 23875
T (Sec) 171.03 167,41 161.81 | £8.35

The sclution fluctuarion of any generation 15 shown in Fipure 2. Rapid convergence and little
fluctuation in the proposed algorithm and method of rel [2]) and [7]) 15 evident in the figure. [n
these methods, the Ouctuation has been omutled completely after 251h ileration, bul inoref | 3]}
method, this exits till the end of the process.
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Figure 2 Convergence history for optimized solulion of truss bridge with 26 members

4.2 Kpace truss with 34 members

In this example, a space truss with 34 members, shown in Figure 3, 15 studied. The structure
loading is presented intable 3, Optimization of the shape of this truss is performed under stress,
buckling and nodal displacement constraints, The stress in all members should not be mere than
allowable ones. Tn nodes 9, 10, 11 and 12, displacement in o direction is restrained to 0,05
meters, and also, o 0.02 meters inx and v directions. The structure members are divided to 7
groups -as presented in table 4 -and their cross section will be chosen from douhle angle profiles

of table &,
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upper and lower limits are as:
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Table 3 Loading or space truss with 34 members
Node | PN P, KN P, KN
9 ] 1 =25
n 0 0 =25
i1 L0 0 -25
12 £ 10 25
Table 4 Groups of members for space truss with 34 members

('rll-;]-l..l;___._d_r ' .‘;h:r'ﬂhe:'?\iumbm'
1 1,2,3,4
2 56,7,88.10, 11,12
3 13, 14,135, 16
4 17, 18,19, 20
5 21, 22,23, 24, 25, 26,27, 28
fi 29,30,3]1,32
7 30, 34

The displacement of nodes 1,23 and 4 in x and y directions, and also, of nodes 5,6,7 and 8 in
x, v and z directions are selected as shape design variables, Because of symmetry of the structure
with respect to xz and yz planes, the variables are divided mto 5 groups. These groups and their

In=x=-%=-x=4
Yy =y =y ==y, 54
X, =Xy ==X, =45 54
Ve =¥ ==V, ==Y < 4

The maximum difference between upper and lower limits of shape variables is in the fifth

group (Xs) and equals to 4. If precision of 0.01 is used, the length of substrings showing these
variables will be 9. The total number of independent design variables in this example equals to
12. Here, tomake the optimization problem unconstraint, a penalty function coefficient of 10 is
used. The weight normalization factor for [5] scheme will be equal to 1500,

The optimization results of the four discussed methods are presented in table 5. Asitis

evident in the table, the best sglution belongs to the proposed method giveing an optimized
structure with the weight of 1327.5 kilograms. Next is [2] method, with minimum weight of
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13854 kp and [5] with weight of 13978 kg and at the last, [7] technique, with an optimized
structure having weight of 1398 ke, It is reminded that the optimum structure dimensions in sy
plane will be 2 % 2 meters and these dimensions are constant through the height of structure. In
other words, the aptimized structure is the one being prismatic in the height,

Table 5 The optimized soluton for space trss with 34 members

Variahle Ref [2] Rel [7] Ref [5] Proposed
Aifem’) 21.60 21.60 21.60 16,26
As 13.80 16.26 16.26 13.82
Aa 9.68 9.68 068 0,68
Ay 11.64 11.38 11.64 11.64
Ac 15.06 11.64 11.64 1506
A 0.6 .68 1138 968
Ax Loon | 968 968 D58
¥,(m) 1Loo0 | oo | L4t 094
Ha 1.000 1.000 1000 1000
X3 1000 1.000 1.059 |.000
p | Looo 1.000 1.029 000
X5 3.57% 4,563 4,266 3,594
Weight (kg 13854 1398.0 13978 1327.5
Time (Sec) 159,64 155.63 13881 254.5%

The convergence history in any generation is shown in Figure 4, In this problem the solution
Nuetuztions have been reduced in ref [5]) method.

Figure 3 Convergence history of optimized solution for space truss with 34 members
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5. CONCLUSIONS

[n this method, variations of the optimized weight of the structure in scquential iterations has
less fluctuations. It proceeds monotonously to a design with smaller weight.

Studying the proposed relationship for seleetion and reproduction operators, it was seen that
strings  with less litness than the average total fitness is omitted soon and they loose the
opprotunity of being placed in mating pool. In other words, they will not participate in
generating the strings of the next generation. In addition, the population characteristics will not
be broken in any gencration and good schemas will remain from the previous generations.
Therefore, convergence to the optimized solution, specially in large populations that have
population size greater than 50, will increase significantly.

Based on the experience of the previous investigation and also the writers numerical works,
crossover type is effective in search process. Three points, four points and uniform crossovers
having percentages of 10, 20, 30, 40 and 50 have been studied in this investigation, and among
them, three points crossover has shown to be the best. So, this type of crossover has been used
for the analysis.
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